NASH EQUILIBRIUM: THEORY

Preferences

- Ordinal preferences compare items, but not the intensity of preferences.
 - For example, I like bananas more than apples.
- Cardinal preferences compare items but, also, the intensity of preferences.
 - For example, I like bananas 2.5 times more than apples.
- However, cardinal preferences require more assumptions.
- For now (i.e. chapters 2-3), we will assume preferences are ordinal.

Ordinal Preferences

- If person i strictly prefers item A to item B, we write: $A \succ_i B$.
- If person i weakly prefers item A to item B, we write: $A \succeq_i B$
- If person i is indifferent between item A to item B, we write: $A \sim_i B$
- We make 2 assumptions on preferences. Specifically,
 - that preferences are complete (each pair can be compared); that is, either A ≥_i B or B ≥_i A or both; and
 - that preferences are **transitive**; that is, if $A \succ_i B$ and $B \succ_i C$, then $A \succ_i C$.

PAYOFF FUNCTION

- When using ordinal preferences, we can assign a payoff function to the preferences.
- Example 1: if $A \succ_i B$, then, we could assign, for example,
 - u(A) = 2 and u(B) = 1.
 - In fact, any u(A) and u(B) such that u(A)>u(B) would do.
- Example 2: if $A \succ_i B$ and $B \succ_i C$, then, we could assign, for example,
 - u(A) = 3, u(B) = 2 and u(C) = 1.
 - In fact, any u(A), u(B) and u(C) such that u(A)>u(B)>u(C) would do.
- Since preferences are ordinal, the payoff function does not convey intensity.

Strategic Games with Ordinal Preferences

Definition

A strategic game with ordinal preferences consists of:

- 1 a set of players,
- 2 a set of actions for each player, and
- g preferences over the set of action profiles for each player.
- An action profile is a list of specific actions for each player.
- The game does not contain time information, as it assumes players' moves are simultaneous.

NORMAL-FORM GAME TABLE

• A 2×2 game is represented with a game table as illustrated below.

Prisoner's Dilemma

- The game was first posed by Flood and Dresher at RAND in 1950.
- The game consists of the following elements.
 - Players: There are two suspects.
 - Actions: Stay quiet or squeal.
 - Preferences:
 - Both squeal \rightarrow they each get 10 years in prison.
 - Both stay quiet → they each get 2 years in prison.
 - One squeals, the other stays quiet → the one that squeals gets 0 years, the other gets 15 years.

$$(S, SQ) \succ_i (SQ, SQ) \succ_i (S, S) \succ_i (SQ, S)$$

Prisoner's Dilemma (Cont.)

Prisoner 2

Prisoner 1

	Stay Quiet	Squeal
Stay Quiet	2,2	0,3
Squeal	3,0	1,1

Prisoner's Dilemma (Examples)

High Price Low Price
300,300 0,400
400,0 200,200

Firm 2

Athlete I

	Atmete 2				
	Clean	Steroids			
Clean	5,5	2,8-c			
Steroids	8-c,2	5-c,5-c			

Athlete 2

Battle of the Sexes

- The game was first posed by Luce and Raiffa in 1957.
- The game consists of the following elements.
 - Players: There is a man and a woman.
 - Actions: Go to boxing or opera.
 - Preferences:
 - Meet at the boxing game → man earns a payoff of 2 and woman of 1.
 - Meet at the opera → woman earns a payoff of 2 and man of 1.
 - Don't meet each other → they each get a payoff of 0.

$$(B,B) \succ_1 (O,O) \succ_1 (O,B) \sim_1 (B,O)$$

Christos A. Ioannou $(O,O) \succ_2 (B,B) \succ_2 (O,B) \sim_2 (B,O)$

Battle of the Sexes (Cont.)

Player 2

		Boxing	Opera
er 1	Boxing	2,1	0,0
Player 1	Opera	0,0	1,2

BATTLE OF THE SEXES (EXAMPLES)

Chicken Game

- The game was first posed by biologist John Maynard Smith in 1973.
- The game consists of the following elements.
 - Players: There are two drivers.
 - Actions: Go straight or swerve.
 - Preferences:
 - If one goes straight and the other swerves → the one that swerved is the chicken.
 - If both swerve \rightarrow at least they do not crash.
 - If both go straight \rightarrow they crash.

$$(S, Sw) \succ_i (Sw, Sw) \succ_i (Sw, S) \succ_i (S, S)$$

CHICKEN (CONT.)

Player 2

		Swerve	Straight
er 1	Swerve	3,3	2,4
Player 1	Straight	4,2	1,1

CHICKEN (EXAMPLES)

Stag Hunt

- The game was first posed by philosopher Jean-Jacques Rousseau in 1775.
- The game consists of the following elements.
 - Players: There are two hunters.
 - Actions: Stag or Hare.
 - Preferences:
 - Hunt stag solo → the individual gets 0 units of food.
 - Hunt hare solo → the individual gets 1 unit of food.
 - Hunt stag with other player → each gets 2 units of food.

$$(S,S) \succ_i (H,H) \sim_i (H,S) \succ_i (S,H)$$

STAG HUNT (CONT.)

Player 2

		Stag	Hare
er 1	Stag	2,2	0,1
Player 1	Hare	1,0	1,1

STAG HUNT (EXAMPLES)

MATCHING PENNIES

- The game was first posed by von Neumann (1928).
- The game consists of the following elements.
 - Players: There are two individuals.
 - Actions: Choose heads or tails.
 - Preferences:
 - Player 1 wins → the actions match.
 - Player 2 wins \rightarrow the actions do not match.

$$(H,H) \sim_1 (T,T) \succ_1 (H,T) \sim_1 (T,H)$$

$$(H,T) \sim_2 (T,H) \succ_2 (H,H) \sim_2 (T,T)$$

MATCHING PENNIES (CONT.)

Player 2

		Heads	Tails
Player 1	Heads	1,-1	-1,1
	Tails	-1,1	1,-1

Christos A. Ioannou

20/33

MATCHING PENNIES (EXAMPLES)

	Goalie				Driver		iver
		East	West			Speed	Obey
Kicker	East	-1,1	1,-1		eman Check	1,-1	-1,1
	West	1,-1	-1,1	<u>.</u>	Policeman Sleep C	-1,1	1,-1

NASH EQUILIBRIUM

- An equilibrium is a state in which opposing forces or influences are balanced.
- If a is an action profile, $a=(a_1,a_2,\ldots,a_n)$, then a_{-i} is an action profile containing everyone's action except player i, i.e., $a_{-i}=(a_1,a_2,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$.

Definition

The action profile a^* in a strategic game with ordinal preferences is a **Nash equilibrium** (NE) if for every player i,

 $u_i\left(a^*\right) \geq u_i\left(a_i, a_{-i}^*\right)$ for every action profile a_i of player i,

where u_i is a payoff function that represents player i's preferences.

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_i\left(a_{-i}\right) = \left\{a_i \text{ in } A_i: u_i\left(a_i, a_{-i}\right) \geq u_i\left(a_i', a_{-i}\right) \text{ for all } a_i' \text{ in } A_i\right\}.$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

• The best response for player i given action(s) a_{-i} is written as:

$$B_{i}\left(a_{-i}\right)=\left\{ a_{i}\text{ in }A_{i}:u_{i}\left(a_{i},a_{-i}\right)\geq u_{i}\left(a_{i}^{\prime},a_{-i}\right)\text{ for all }a_{i}^{\prime}\text{ in }A_{i}\right\} .$$

ALTERNATIVE DEFINITION OF A NASH EQUILIBRIUM

Proposition

The action profile a^* is a Nash equilibrium of a strategic game with ordinal preferences if and only if every player's action is a best response to the other players' actions; that is,

$$a_i^* \in B_i\left(a_{-i}^*\right)$$
 for every player i .

 An action profile is a Nash equilibrium if every player's action is best responding to each other.

NASH EQUILIBRIUM (EXAMPLE)

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .

NASH EQUILIBRIUM (EXAMPLE)

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

NASH EQUILIBRIUM (EXAMPLE)

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

A	○∴D	<u>C</u>	D	<u>О</u> В	♀ B	<u>О</u> Д
					Α	
					В	
					C	
					_	

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

25/33

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

) D	D	/ \	<u>ф</u> В	<u> </u>
				E

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - **Payoffs:** represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

- Consider the following game consisting of the following elements.
 - Players: $\{1, 2, 3, 4, 5, 6, 7\}$
 - Actions: $\{A, B, C, D\}$
 - Payoffs: represented with u_i .
- Consider action profile: $\{A, D, C, D, B, B, A\}$.

It is in no player's interest to unilaterally deviate from a Nash Equilibrium.

Find all Nash Equilibria in the following games.

Christos A. Ioannou

26/33

Find all Nash Equilibria in the following games.

Definition

strictly dominated.

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right)$ for every list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a_i' is

L		R
\cap	3, 3	1, 1
Ω	4, 1	2, 2

Definition

strictly dominated.

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right)$ for every list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a_i' is

L		R
\cap	3, 3	1, 1
Ω	4, 1	2, 2

Definition

strictly dominated.

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right)$ for every list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a_i' is

L		R
\cap	3, 3	1, 1
Ω	4, 1	2, 2

Definition

strictly dominated.

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right)$ for every list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a_i' is

L		R
\cap	3, 3	1, 1
Ω	<u>4,</u> 1	2, 2

Definition

strictly dominated.

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right)$ for every list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a_i' is

L R 3, 3 1, 1 4, 1 2, 2

Definition

strictly dominated.

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right)$ for every list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a_i' is

	L	R
\supset	3, <u>3</u>	1, 1
Ω	4, 1	2, 2

Definition

strictly dominated.

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right)$ for every list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a_i' is

	L	R
\cap	3, <u>3</u>	1, 1
Ω	4, 1	2, 2

Definition

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right) \ \, \text{for every list} \ \, a_{-i} \ \, \text{of the other players' actions,}$

where u_i is player i's payoff function. We say that the action a_i' is **strictly dominated**.

	L	R
n	3, <u>3</u>	1, 1
Ω	4, 1	2, 2

U is strictly dominated by D.

Definition

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right) \ \, \text{for every list} \ \, a_{-i} \ \, \text{of the other players' actions,}$

where u_i is player i's payoff function. We say that the action a_i' is **strictly dominated**.

	L	R
n	3, <u>3</u>	1, 1
Ω	4, 1	2, 2

U is strictly dominated by D.

Definition

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right) \text{ for every list } a_{-i} \text{ of the other players' actions,}$

where u_i is player i's payoff function. We say that the action a_i' is **strictly dominated**.

- U is strictly dominated by D.
- Neither L nor R are strictly dominated.

Definition

In a SGWOP, player i's action a_i'' , strictly dominates her actions a_i' , if $u_i\left(a_i'',a_{-i}\right)>u_i\left(a_i',a_{-i}\right) \text{ for every list } a_{-i} \text{ of the other players' actions,}$

where u_i is player i's payoff function. We say that the action a_i' is ${\bf strictly\ dominated}.$

- U is strictly dominated by D.
- Neither L nor R are strictly dominated.
- A strictly dominated strategy will never be played in a Nash equilibrium.

Weakly Dominated Strategy

Definition

In a SGWOP, player i's action a_i'' , weakly dominates her actions a_i' , if $u_i(a_i'', a_{-i}) \ge u_i(a_i', a_{-i})$ for every list a_{-i} of the other players' actions, and,

 $u_i(a_i'', a_{-i}) > u_i(a_i', a_{-i})$ for at least one list a_{-i} of the other players' actions, where u_i is player i's payoff function. We say that the action a'_i is

weakly dominated.

EXAMPLE

	Α	В	С	
Z	3, 4	6, 3	5, 2	Find all:
>	3, 2	5, 1	2, 3	(i) weakly dominated strategies, (ii) strictly dominated strategies, (iii) Nach Equilibria
×	2, 3	2, 2	2, 1	(iii) Nash Equilibria.

STRICT NASH EQUILIBRIUM

Definition

The action profile a^* in a SGWOP is a **strict Nash** equilibrium, if for every player i,

 $u_i\left(a^*\right) > u_i\left(a_i, a_{-i}^*\right)$ for every action profile a_i of player i,

where u_i is a payoff function that represents player i's preferences.

- The game has 2 Nash equilibria.
- Only 1 Nash equilibrium is strict.
- A Nash equilibrium might consist of weakly dominated strategies.
- The non-strict Nash equilibrium is less stable.

- The game has 2 Nash equilibria.
- Only 1 Nash equilibrium is strict.
- A Nash equilibrium might consist of weakly dominated strategies.
- The non-strict Nash equilibrium is less stable.

- The game has 2 Nash equilibria.
- Only 1 Nash equilibrium is strict.
- A Nash equilibrium might consist of weakly dominated strategies.
- The non-strict Nash equilibrium is less stable.

- The game has 2 Nash equilibria.
- Only 1 Nash equilibrium is strict.
- A Nash equilibrium might consist of weakly dominated strategies.
- The non-strict Nash equilibrium is less stable.

- The game has 2 Nash equilibria.
- Only 1 Nash equilibrium is strict.
- A Nash equilibrium might consist of weakly dominated strategies.
- The non-strict Nash equilibrium is less stable.

- The game has 2 Nash equilibria.
- Only 1 Nash equilibrium is strict.
- A Nash equilibrium might consist of weakly dominated strategies.
- The non-strict Nash equilibrium is less stable.

- The game has 2 Nash equilibria.
- Only 1 Nash equilibrium is strict.
- A Nash equilibrium might consist of weakly dominated strategies.
- The non-strict Nash equilibrium is less stable.

Symmetric Games

Definition

A two-player SGWOP is **symmetric** if the players' set of actions are the same and the players' preferences are represented by payoff function u_1 and u_2 for which $u_1 (a_1, a_2) = u_2 (a_2, a_1)$ for every action pair (a_1, a_2) .

Players are all homogeneous and no roles are assigned.

Definition

An action profile a^* in a symmetric SGWOP is a **symmetric** Nash equilibrium if it is a Nash equilibrium and a_i^* is the same for every player i.

EXAMPLE

	Α	В	С	
Z	1, 1	2, 1	4, 1	
>	1, 2	5, 5	3, 6	Find all: (i) Nash Equilibria, (ii) symmetric Nash Equilibria.
×	1, 4	6, 3	0, 0	(ii) symmetric ivasii Equilibria.